Source Buy Sell Plastics, virgin, reprocessed, regrind, scrap plastic

Brief Overview of Methods to Remove Odor in Recycled Plastics

The smell of recycled plastics has been a persistent issue that impacts both manufacturers and consumers. When plastics are recycled, they often retain odors from their previous use, such as food, chemicals, or other substances. These smells can be particularly off-putting and can limit the applications for which recycled plastics can be used.

For instance, in food packaging or consumer goods, the presence of unpleasant odors can significantly deter consumers, affecting the marketability and acceptance of products made from recycled materials. Addressing the odor issue is crucial for the broader adoption of recycled plastics and for promoting sustainability.

Removing odor from recycled plastics involves several processes aimed at eliminating contaminants and volatile organic compounds (VOCs) that cause unpleasant smells. Here are some of the most effective methods used in the industry:

Washing and Cleaning: The initial step in odor removal is thorough washing and cleaning of the plastic waste. This involves using hot water and detergents to remove surface contaminants, oils, and residues from the plastics. Mechanical washing systems with high agitation are often employed to ensure that all debris and foreign substances are effectively scrubbed off the plastic surfaces.

Thermal Decomposition: Another method is thermal decomposition, where the plastics are heated to high temperatures to break down and volatilize the odor-causing compounds. This process can be done in a controlled environment to ensure that the VOCs are captured and treated rather than released into the atmosphere. Thermal processes like pyrolysis and gasification can also be used to convert the plastic into a more stable form with fewer odors.

Chemical Treatment: Chemical treatment involves using various chemical agents to neutralize or remove odors. These agents can react with the odor-causing compounds to either break them down or mask their smell. Common chemicals used include oxidizing agents like ozone, hydrogen peroxide, or chlorine dioxide, which can effectively neutralize many organic odors.

Vacuum Stripping and Degassing: In this process, the plastic is heated in a vacuum chamber, causing the volatile compounds responsible for odors to evaporate. The vacuum environment reduces the boiling points of these compounds, allowing them to be removed at lower temperatures. This technique is particularly effective for removing deeply embedded odors that cannot be washed away.

By combining these methods, manufacturers can significantly reduce or eliminate the odors from recycled plastics, making them suitable for a wide range of applications. Each technique addresses different types of contaminants and odors, and often, a combination of methods is used to achieve the best results. The advancements in these odor removal technologies are crucial for increasing the acceptance and use of recycled plastics in various industries.

Whether you are a manufacturer looking for materials for consumer goods, food packaging, or industrial components, Plastiko, Inc. can provide you with a reliable source of recycled plastics without odors.

By choosing Plastiko, Inc., businesses can confidently contribute to a circular economy while ensuring that their products remain appealing and functional, free from the distracting and unpleasant smells that can plague lesser-quality recycled plastics. Give us a call to learn more: 314-558-6700

Understanding the 4 Most Common Methods of Recycling Plastics

Efficient plastic waste recycling fosters our industry’s shift toward a circular economy, aiding in the reduction of greenhouse gas emissions by repurposing discarded materials as valuable resources within this sustainable model.

The initial stages of collection and sorting are pivotal in ensuring that segregated plastics reach recycling facilities.  Enhancements in collection methods and sorting technologies are imperative for achieving higher recycling rates.

Notably, recycling rates soar tenfold when plastics are collected separately as opposed to mixed collections.

Recycling waste into reusable materials is a cornerstone of sustainability, diminishing the necessity for fresh resources and curtailing energy consumption and emissions associated with refining and manufacturing processes.

Plastic recycling encompasses 4 various methods.

Mechanical recycling is a common method employed for recycling plastics, such as PET and HDPE. This approach involves reprocessing plastic waste without altering its chemical composition. Through mechanical recycling, plastics are sorted, cleaned, melted, and molded into new products. It’s a straightforward and cost-effective method that helps conserve resources and reduce environmental impact by giving new life to discarded plastics.

Chemical recycling is an emerging approach that offers a promising solution for handling plastic waste. Unlike mechanical recycling, which focuses on reprocessing plastics without altering their chemical structure, chemical recycling involves breaking down polymers into their molecular components through various processes such as pyrolysis, gasification, and depolymerization. These shorter molecules can then be used as feedstock for manufacturing new plastics and chemicals. Chemical recycling holds significant potential for scalability and complementing traditional recycling methods, offering a more comprehensive solution for tackling plastic pollution and advancing towards a circular economy.

Dissolution recycling is an innovative method for managing mixed plastics waste. This process selectively dissolves polymers in a solvent, allowing them to be separated from the waste stream and recovered in a pure form without altering their chemical composition. Dissolution recycling offers a targeted approach to separating plastics, such as PVC, PS, PA, and PP, from mixed, multi-material waste, facilitating their reuse in various applications. With several industrial examples already in existence, dissolution recycling demonstrates significant potential for enhancing plastic waste management and advancing sustainability efforts.

Organic recycling presents a sustainable solution for managing biodegradable plastics waste. This method involves controlled microbiological treatment of biodegradable plastics under either aerobic conditions (composting) or anaerobic conditions (bio gasification). Through the actions of microorganisms, biodegradable plastics are broken down into stabilized organic residues, carbon dioxide, and methane. Organic recycling offers an environmentally friendly approach to managing biodegradable plastics waste, reducing the burden on landfills and minimizing greenhouse gas emissions. With its focus on harnessing natural processes, organic recycling contributes to the transition towards a more circular and environmentally sustainable economy.

The Plastiko, Inc. team can confidently help you select materials that meet the demanding requirements of your products. Whether it’s achieving optimal performance, ensuring safety and reliability, or meeting regulatory standards, rigorous testing plays a vital role in qualifying plastic resins for use in diverse applications. Ultimately, Plastiko, Inc. commitment of providing customers with top quality resins contributes to the production of your products will meet the needs and expectations of your customers.

Get in touch with Plastiko, Inc today to discuss your challenges and requirements for sourcing recycled resins: 314-558-6700 or visit our full website: